

Alice Delia, Ph.D. Prism Analytical Technologies, Inc. a.delia@pati-air.com Office Number 989-772-5088

Evaluating Fire & Smoke Contamination in Indoor Air

IAQA 18th Annual Meeting

Acknowledgements

Katie Martin - Prism Analytical Technologies, Inc.

Dan Baxter - Environmental Analysis Associates

Fire & Smoke – What's the Concern?

Effect on:

- Appearance
- Health
- Odor

Residual contamination


- Before cleanup
- During cleanup
- After cleanup

Fire & Smoke – Challenges

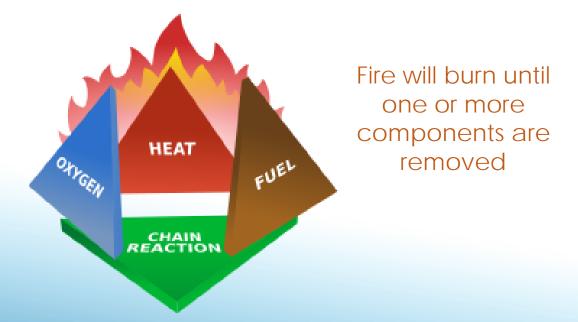
- Complexity of particulate and chemical residues
- Existing particulate methods not effective in comprehensive evaluation
 - ASTM D1506 (Ash Content-Carbon Black)
 - IESO/RIA 6001 (Residue on HVAC Surfaces)
- No VOC methods specific to fire residues

What is Fire?

Rapid oxidation process involving fuel, heat, and oxygen that releases heat, light, and various reaction products

IAQA 18th Annual Meeting

NFPA, "All About Fire"


"Fire triangle". Licensed under CC BY-SA 3.0 via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Fire_triangle.svg#mediaviewer/ File:Fire_triangle.svg

5

4th Component of Fire

Chain reaction necessary to sustain fire

Heat of fire releases energy, which further feeds the oxidation process

IAQA 18th Annual Meeting

NFPA, "All About Fire

"Fire tetrahedron". Licensed under Public Domain via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Fire_tetrahedron.svg#mediaviewer/Fil e:Fire_tetrahedron.svg

Anatomy of a Fire

Ignition

- Fuel, oxygen and heat join together in a sustained chemical reaction.

Growth

 With the initial flame as a heat source, additional fuel ignites. Convection and radiation ignite more surfaces. The size of the fire increases and the plume reaches the ceiling. Hot gases collecting at the ceiling transfer heat, allowing all fuels in a room to come closer to their ignition temperature at the same time.

Fully developed

 Fire has spread over much if not all the available fuel; temperatures reach their peak, resulting in heat damage. Oxygen is consumed rapidly.

Decay (Burnout)

 The fire consumes available fuel, temperatures decrease, fire gets less intense.

NFPA, "All About Fire"

Types of Combustion

- Complete
 - Fuel (Hydrocarbons) + O_2 + Heat \rightarrow CO₂ + H₂O
 - Rare in most environmental fires
- Incomplete
 - Not enough O₂ to completely oxidize hydrocarbons
 - Produces a variety of chemical compounds in various stages of oxidation
 - furans, phenols, carbonyls, aldehydes, ketones, esters, acids, etc.
 - Common in most environmental fires

Indoor Fire

Fire as a result of burning of specific materials within structure or the structural components

- Electrical
- Food/Protein/Grease
- Fuels (Gasoline, Fuel Oil, Diesel)
- Building materials
 - Drywall, insulation, flooring, roofing, structural supports, coatings and paints, etc.
- Building contents
 - Clothing and other textiles, furniture, plastics, rubber, electrical components, appliances, etc.

Uncontrolled fire in an area of combustible vegetation that occurs in the countryside or wilderness area

Biomass

- Hard woods
- Soft woods
- Grasses

Reaction Products: Particulate Fire Residues

3 Common Types

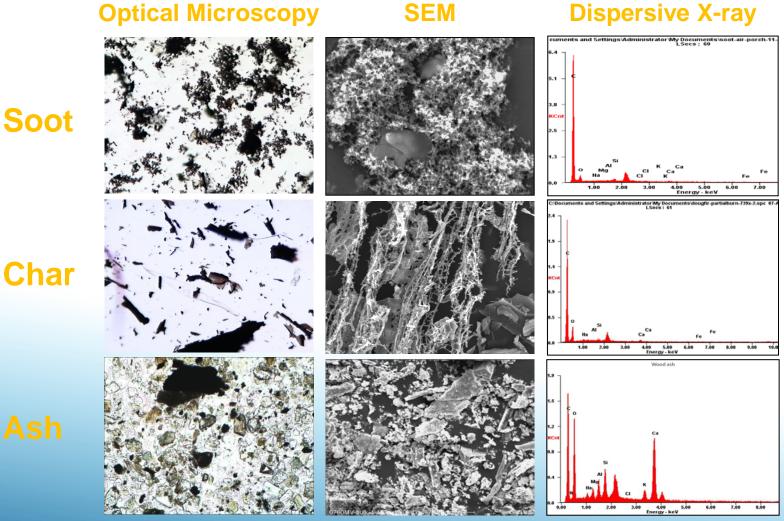
- Soot: fine carbonaceous material produced during incomplete combustion; aciniform structure
- Char: larger, mostly carbonaceous irregular fragments of burned material
- Ash: larger, decarbonized (mostly inorganic) remaining residue of cellulose material; typically mineral salts, carbonates, and oxides or metal/non-combustible compounds and oxides

Methods

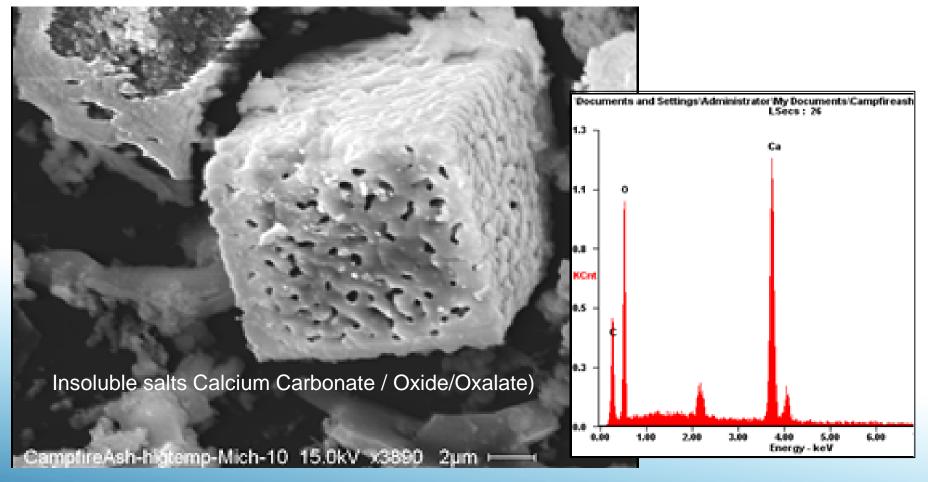
- Carbon black
- Microscopy

Measuring Particulate Fire Residues

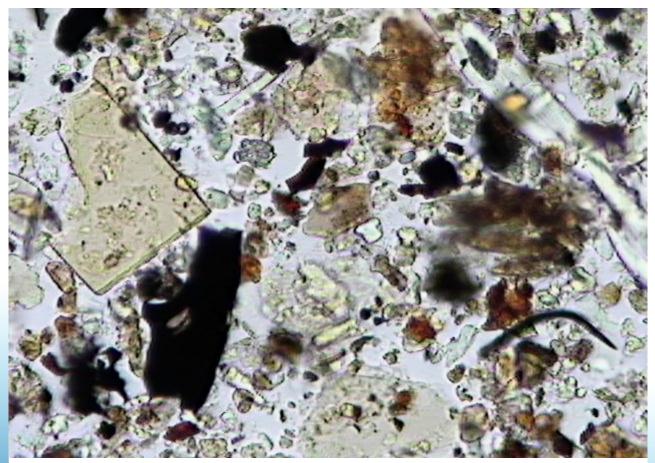
- Optical Microscopy
 - Polarized Light (PLM)
 - Combined TL/RLDF/PLM
 - Stereo RL low power



- Scanning Electron Microscopy & Dispersive X-Ray
 - Surface topography
 - Elemental composition


IAQA 18th Annual Meeting

Morphology of Fire Residue Particles


Data provided by Dan Baxter-Environmental Analysis Associates

Ash Components

Data provided by Dan Baxter-Environmental Analysis Associates

"Firestorm" Air Sample 10/23/07 - Pacific Beach

Complex mixture of lofted soil and fire debris

Data provided by Dan Baxter-Environmental Analysis Associates

Particulate Contamination Guidance

Optical Microscopy: Total Soot/Char/Ash Debris

0.1%	1%	5%	10%	50%
	Normal	Possible	- Likely	Present
Surface fire		cannot be used ratory variability		neasure of "damage"
	pH: Pre	esence c	of Ash	
6.0	8.3	9.0	10	12
No	ormal	Possible -	Likely	Present

Wildfire gaseous emissions primarily acidic (low pH) Particulate settled wildfire "ash" is caustic (high pH)

IAQA 18th Annual Meeting

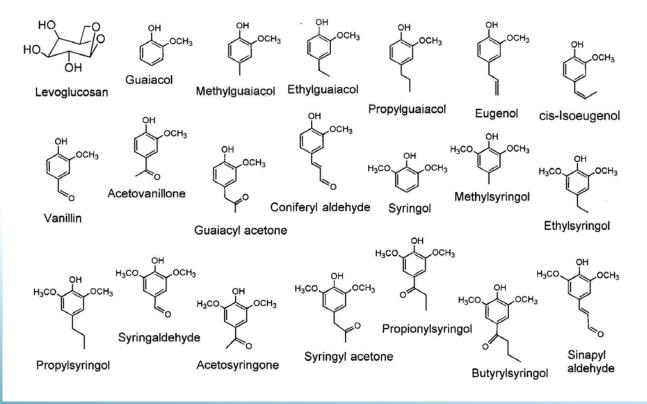
Data provided by Dan Baxter-Environmental Analysis Associates

Reaction Products: Chemical Fire Residues

Hundreds of chemicals

- Many chemical classes
 - inorganics, hydrocarbons (alkanes, alkenes, cyclic), aromatics, aldehydes, furans, phenols, esters, acids, PAHs, etc.
- Large volatility range
 - Permanent gases → VOCs → SVOCs → solids

Must use unique indicators as surrogates to represent all chemicals


- Minimal secondary sources
- Analytically distinct

Determining Chemical Indictors: Literature Review Pechan, Developing NEI-Commercial

Schauer et al., EnvSciTech, 200		Ward, et al., J	AWMA 20 1	Larson et a Health, 19 Carbon mor Methane	94 noxide	Cooking: Tech. Memorandum, VOC CO PM	
n-alkanes branched alkanes n-alkenes branched alkenes alkynes diolefins cycloalkanes cycloalkenes aromatic hydrocarbons	PM2.5 Organic carbon Elemental carbon Elemental Species • Potassium • Chloride CO CO2 Alkanes (C2-C10)	Phenol 2-methylphenol 4-methylphenol 2,4-dimethylphenol Naphthalene 2-methylnaphthalene Acenaphthylene Acenaphthene Dibenzofuran		AcroleinBENZO[A]PYRPropionaldehydeACENAPHTHYButryaldehydeFLUORENEAcetaldehydePHENANTHREIFurfuralFUORANTHENSubstituted furansBENZ[A]ANTHI		2.5 PM NAPHTHALENE BENZO[A]PYRENE ACENAPHTHYLENE FLUORENE PHENANTHRENE FLUORANTHENE PYRENE BENZ[A]ANTHRACEN	
polycyclic aromatic hydrocarbor phenol and substituted phenols guaiacol and substituted guaiaco syringol and substituted syringols aliphatic aldehydes aliphatic ketones	Aromatics (BTEX)	Fluoreneb Pher Anthracene Fluoranthene Pyrene Benzo(a)anthra		Alkyl benzer Toluene Acetic acid Formic acid Nitrogen oxi Sulfur dioxid Methyl chlor	ides (NO,N e	INDENO[1,2,3-C,D]P' ACENAPHTHENE ANTHRACENE BENZO[G,H,I,]PERYLE PAH, TOTAL BIPHENYL BENZENE TOLUENE	
olefinic aldehydes aromatic carbonyls dicarbonyls n-alkenoic acids resin acids Sugars (e.g., levoglucosan) PAH ketones	2009, 2011 Acetophenone Benzyl alcohol 4-Ethyl-2-methoxyphenol 2-Hydroxybenzaldehyde 2-Hydroxy-5-methylbenzaldehyde 2-Methoxyphenol 2-Methoxy-4-methylphenol		ihene nane izene izene	Napthalene Substitute napthalenes Oxygenated monoard Guaiacol (and deriva Phenol (and Syringol (and Catechol (a Total partic		STYRENE FORMALDEHYDE ACETALDEHYDE apala et al., v, 2007	DE
IAQA 18 th Annual Meeti	2-Methylphenol 3-/4-Methylphenol Naphthalene		ie e enzene enzene	Particulate Oxygenate PAHs	Methoxy Levogluc Elementa Organic	cosan al Carbon	18

Determining Chemical Indictors: Literature Review

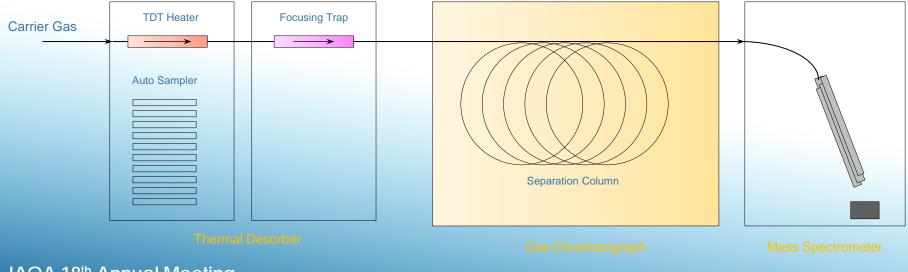
Wood Combustion - Fireplace

Schauer et al., Env Sci Tech, 2001

IAQA 18th Annual Meeting

Measuring Chemical Fire Residues

- Chemically specific
 - Differentiate closely related chemical compounds
- Sensitive
 - Low detection limits
- Variety of sample collection media
 - Air, bulk, dust, wipe, etc.

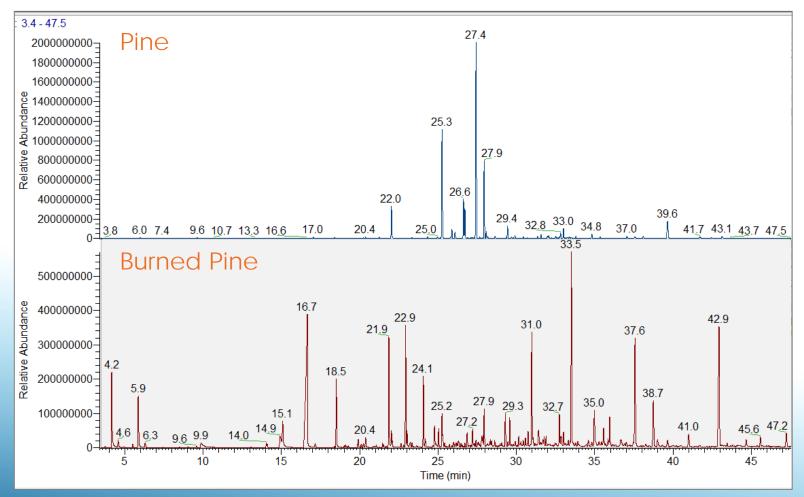

Gas Chromatography-Mass Spectrometry (GC-MS)

 Thermal desorption (TD) – wide range of volatilities and sampling environments

Measuring Chemical Fire Residues

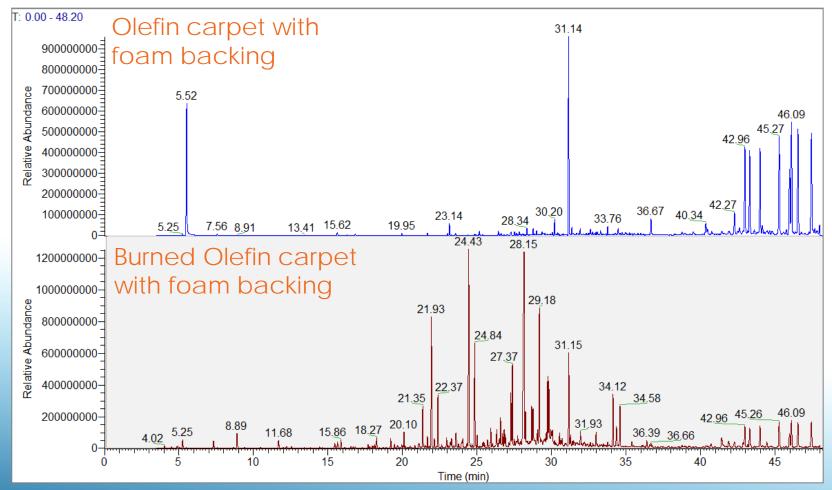
Thermal Desorption Gas Chromatography-Mass Spectrometry (TD GC-MS)

- Sample tube heated to drive off captured VOCs
- GC separates VOCs by volatility and chemical class
- MS identifies individual VOCs by fragmenting molecules into characteristic pieces



Measuring Chemical Fire Residues

Determining Chemical Indictors: Data Review


IAQA 18th Annual Meeting

Emissions from Biomass

Lignin – complex polymer of aromatic alcohols

- Cell walls of plants; most commonly of woods
- Levoglucosan
 - Formed from pyrolysis of wood (lignin)
 - Atmospheric chemical tracer of biomass burning
- Softwoods
 - Guaicols (methoxyphenols)
- Hardwoods
 - Guaicols (methoxyphenols) and syringols (dimethoxyphenols)

Determining Chemical Indictors: Data Review

IAQA 18th Annual Meeting

Emissions from All Materials

- Aliphatic
 - Branched alkanes/alkenes, cyclic alkanes/alkenes
- Aromatics
 - Benzene, toluene, xylenes, styrene
 - Polycyclic Aromatic Hydrocarbons (PAHs)
 - Naphthalene, acenaphthylene, phenanthrene
- Phenols
 - Methyl phenols (cresols)
 - Methoxy methyl phenols (creosols)
- Aldehydes
 - Formaldehyde, acetaldehyde, acrolein

Chemical Indictors

Indicators	
Primary	Common to most fire residues and analytically distinct
	Cresols, Creosol, Guaicol, 4-Ethylguaicol, 2-Furaldehyde, Acenaphthylene
Secondary	Common to some fire residues; may be analytically challenging
	Acrolein, Acetonitrile, Salicaldehyde, 2,4- Dimethylphenol, Biphenyl, Naphthalene, 2- Methylnaphthalene

Ongoing development

New data will inform expansion and revision of indicators

Chemical Data Considerations

Sources

Variety and crossover

Volatility

- High, Medium, Low recent fire
- Low older fire
- **Fuel Material**
 - Indoors variability due to materials burned
 - Wild fire more homogeneous; based on type of biomass burned

Environmental Conditions

- High temperature & humidity increased concentrations
- High ventilation rates decreased concentrations

Chemical Data Considerations: Persistence

Volatility	Compounds
Very Volatile (Permanent Gases)	CO, NOx, Cyanide, etc.
Light VOCs	Formaldehyde, Acrolein, Acetonitrile
Medium VOCs	Cresols, 2-Furaldehyde, Guaicol,
Heavy VOCs	Creosol, 4-Ethylguaicol, 2,4-Dimethylphenol
Light SVOCs	Naphthalene, 2-Methylnaphthalene, Biphenyl, Methylbiphenyl, Acenaphthylene, Levoglucosan*
Heavy SVOCs	Other PAHs

Sampling Strategy

- Type of fire
 - Indoor large
 - Indoor small
 - Outdoor or Wildfire
- Length of time since fire
 - Weeks, months, years
- Level of cleanup or remediation performed
 - None
 - Surface
 - Replacement

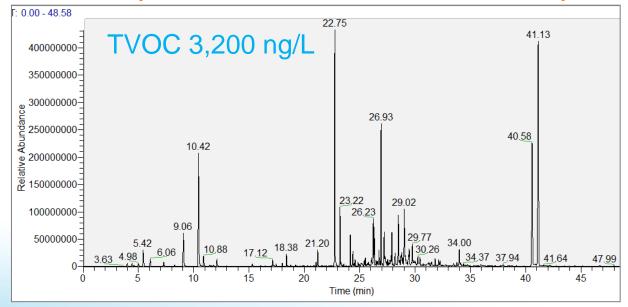
Chemical Sampling Media

Sample Type	Volatility	Time Frame (post fire)	Applicability
Air	High – Medium	Weeks – Months	Presence of odor; estimate of inhalation exposure
Bulk	Medium – Low	Weeks – Years	Persistence of chemical residue; re-emission of contaminants
Dust	Low	Months – Years	Persistence of chemical residue
Wipe	Low	Months – Years	Presence of surface residue

Indoor Fire Scenario: Effect on Exposed Materials

Fire in clothing warehouse ~6 months prior to sample collection

Bulk material off gas performed at 80 °C (~175 °F)


Compound	Affected #1	Affected #2	Unaffected #1	Unaffected #2
Average Concentrations (ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)
Acrolein	< 1	< 1	< 1	< 1
Acetonitrile	< 1	< 1	< 1	< 1
2-Furaldehyde	9	10	4	3
Salicylaldehyde	3	4	3	1
o-Cresol	2	6 *	1	1
2-Methoxyphenol	16	6	8	7
m,p-Cresol	5	5 *	1	1
2,4-Dimethylphenol	3	3	2	5
Naphthalene	180 *	20	25	33
Creosol	4	4	< 1	< 1
2-Methylnaphthalene	63	21	23 *	37 *
Biphenyl	23	44	2	9
Methylbiphenyl	52	21	22	68 *
Acenaphthylene	11	10	2	4

IAQA 18th Annual Meeting

One of more outliers increased the average concentration for this sample set.

Indoor Fire Scenario: Post Clean Up Air Sampling

Air Sample Results – Residence after clean up

Fire indicators

IAQA 18th Annual Meeting

Acetonitrile – 0.8 ng/L Guaicol – 1.3 ng/L Cresols – 2.5 ng/L (total) Creosol – 1.2 ng/L 4-Ethylguaicol – 0.6 ng/L

Data Reporting & Interpretation

Air Sample Results

	Concentration	Reporting Limit			
CAS	ng/L	ng/L	RI	Additional Info	rmation
98-01-1	< 3	3.0	922	Furfural	
95-48-7	0.6	0.3	1180		
90-05-1	3.2	0.3	1192	Guaicol	Prima
108-39-4 & 106-44-5	1.3	0.5	1209		1 minu
93-51-6	4.1	0.5	1301	1	
2785-89-9	2.4	0.5	1388	4-Ethylg	
208-96-8	< 3	3.0	1657		
	98-01-1 95-48-7 90-05-1 108-39-4 & 106-44-5 93-51-6 2785-89-9	CAS ng/L 98-01-1 < 3	Concentration Limit CAS ng/L ng/L 98-01-1 < 3	Concentration Limit RI 08-01-1 < 3	Concentration Limit RI Additional Info 98-01-1 < 3

Secondary Fire Indicators		Concentration	Reporting Limit		
Compound	CAS	ng/L	ng/L	RI	Additic
Acrolein	107-02-8	< 3	3.0	538	Reporte
Acetonitrile	75-05-8	< 0.3	0.3	574	
Salicylaldehyde	90-02-8	< 0.5	0.5	1148	
2,4-Dimethylphenol	105-67-9	0.5	0.3	1271	
Naphthalene	91-20-3	0.6	0.3	1295	
2-Methylnaphthalene	91-57-6	0.3	0.3	1408	
Biphenyl	92-52-4	< 3	3.0	1483	Reporte
Methylbiphenyl	N/A	< 3	3.0	1653	Cannot (Semiqua

IAQA 18th Annual Meeting

Bulk Material Sample Results

Primary Fire Indicators		Concentration	Reporting Limit			
Compound	CAS	ng/g	ng/g	RI	Additional Information	
2-Furaldehyde	98-01-1	420	35	937	Furfural	
o-Cresol	95-48-7	150	3.5	1197		
2-Methoxyphenol	90-05-1	80	3.5	1209	Guaicol	
m,p-Cresol	108-39-4 & 106-44-5	160	7.0	1225		
Creosol	93-51-6	24	7.0	1316		
4-Ethyl-2-methoxyphenol	2785-89-9	20	7.0	1405	4-Ethylguaicol	
Acenaphthylene	208-96-8	< 35	35	1662		

Secondary Fire Indicators		Concentration	Reporting Limit		
Compound	CAS	ng/g	ng/g	RI	Additional Information
Acrolein	107-02-8	< 35	35	553	Reported Semiquantitatively
Acetonitrile	75-05-8	6.0	3.5	587	
Salicylaldehyde	90-02-8	25	7.0	1165	
2,4-Dimethylphenol	105-67-9	70	3.5	1288	
Naphthalene	91-20-3	84	3.5	1310	
2-Methylnaphthalene	91-57-6	8.7	3.5	1423	
Biphenyl	92-52-4	< 35	35	1500	Reported Semiquantiatively
Methylbiphenyl	N/A	< 35	35	1659	Cannot determine isomer; Reported Semiquantitatively

Conclusions

- Fire residues have significant effect on appearance, health, odor
 - Concern about residual contamination
 - Complexity of particulate and chemical residues
- Methods
 - Existing particulate methods do not provide comprehensive evaluation
 - No specific chemical (VOC) methods used for fire residues
- Use VOC indicators to represent hundreds of chemicals in fire and smoke
 - GC-MS provides chemical specificity and sensitivity
 - Categorize as primary and secondary

Conclusions Continued

- Planning and data interpretation must include consideration of:
 - Secondary sources, volatility, fuel material, and environmental conditions
- Sample collection must include consideration of:
 - Type of fire, time since fire, level of cleanup/remediation

Along with appropriate particulate data, VOC indicators can determine level of remaining fire and smoke residues for indoor air, materials and surfaces

Bibliography

- 1. National Fire Protection Association. All About Fire. <u>http://www.nfpa.org/press-room/reporters-guide-to-fire-and-nfpa/all-about-fire</u> (accessed January, 2015).
- 2. Heitmann, K.,; Wichmann, H.; Bahadir, M.; Gunschera, J.; Schulz, N.; Salthammer, T. Chemical Composition of Burnt Smell Caused by Accidental Fires: Environmental Contaminants. *Chemosphere* **2011**, *8*2, 237-243.
- 3. Heitmann, K.,; Wichmann, H.; Bahadir, M. Chemical Causes of the Typical Burnt Smell After Accidental Fires. *Anal. Bioanal. Chem.* **2009**, *395(6)*, 1853-65.
- 4. Ward, T.J.; Hamilton, R.F. Jr.; Smith, G.C. The Missoula Valley Semivolatile and Volatile Organic Compound Study: Seasonal Average Concentrations. *J Air & Waste Manage. Assoc.* **2005**, *55*, 1007-1013.
- 5. Regional Hazardous Materials Team HM09-Tualatin Valley Fire & Rescue, Office of State Fire Marshal. A Study of Chemicals Found in the Overhaul Phase of Structure Fires Using Advanced Portable Air Monitoring Available for Chemical Speciation. Feb 25 2011.
- 6. Bolstad-Johnson, D.,; Burgess, J.; Crutchfield, C.; Storment, S.; Gerkin, R.; Wilson, J. Characterization of Firefighter Exposures During Fire Overhaul. *AIHAJ* **2000**, *61*, 636-641.
- 7. Wakefield, C.J. A Toxicological Review of the Products of Combustion. HPA Chemical Hazards and Poisons Division, **2010**, HPA-CHaPD-004.
- 8. Larson, T.V.; Koenig, J.Q. Wood Smoke: Emissions and Noncancer Respiratory Effects. *Annu. Rev. Public Health*, **1994**, *15*, 133-156.
- 9. Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T. Measurement of Emissions from Air Pollution Sources. 3. C1-C29 Organic Compounds from Fireplace Combustion of Wood. *Environ. Sci. Technol.* **2001**, *35*, 1716-1728.
- 10. Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T. Measurement of Emissions from Air Pollution Sources. 1. C1 through C29 Organic Compounds from Meat Charbroiling. *Environ. Sci. Technol.* **1999**, *33*, 1566-1577.
- 11. CDC Agency for Toxic Substances and Disease Registry (ATSDR); <u>http://www.atsdr.cdc.gov/</u> (accessed January, 2014).
- 12. EPA Air Toxics Website; <u>http://www.epa.gov/ttn/atw/</u> (accessed January, 2014).

Questions?

Alice Delia a.delia@pati-air.com

IAQA 18th Annual Meeting